
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 1: Quantum Tanner Codes IV
January 24, 2024

Lecturer: John Wright Scribe: Tobias Scott

1 Recap

1.1 Left-Right Cayley Complex

To build a Quantum Tanner Code, we start with a group of checks G that we want to pass;
consider sets of generators A,B of this group, such that |A| = |B| = ∆. We can build a left-
right Cayley Complex X, as a graph consisting of V00 ∪V01 ∪V10 ∪V11, where Vij = G×{ij},
and each (g, ij) is connected to each (ag, (i + 1)j) and (gb, i(j + 1)) by edges identified by
a ∈ A, b ∈ B (in our case, each a = a−1 so the graph is undirected).

A square is identified by {(g, 00), (ag, 10), (gb, 01), (agb, 11)}; we can identify the set of all
squares by Q and for any vertex v, can identify Q(v) as the squares incident to v. Each
square incident to a vertex is identified by all a ∈ A and b ∈ B that can define the edges to
the square at that vertex, forming a ∆ ×∆ matrix. We can note that (g, 00) and (ag, 10)
share an edge, so share a set of squares that contain this edge, defined by a row in Q(g, 00)
and Q(ag, 10). Likewise, Q(g, 00) and Q(gb, 01) share a column corresponding to the squares
containing the edge shared by these vertices; Q(g, 00) and Q(agb, 11) share a single entry
corresponding to the square defined by a, b.

1

1.2 Defining a CSS Code

First, we establish CA and CB, linear error correcting codes on A and B respectively (that
is, spaces of strings orthogonal to the checks in A and B). For our CSS code, we instantiate
physical bits as each element in the set of squares Q, of which there are ∆2 squares at each
of |G| vertices in some Vij. Each string in the code is a sum of strings defined by a vertex
in some Vij, so we can zoom into a particular v, where the string is zero everywhere except
on the indices corresponding to the squares defining Q(v), where its values can be taken to
form a matrix.

We can define an X-code Code0 as the space of strings such that for each v ∈ V00 ∪ V11, the
strings on Q(v) pass the space of checks in CA ⊗CB. Elements of (CA ⊗CB)

⊥ have zero dot
product with CA ⊗ CB, so can be decomposed into a component where the columns of Q(v)
pass checks in CA and a component where the rows of Q(v) pass checks in CB, Hence, the
local code across each v ∈ V00 ∪ V11 requires that each Q(v) = c + r for c ∈ C⊥

A ⊗ FB
2 and

r ∈ FA
2 ⊗C⊥

B , which we write as Q(v) ∈ C⊥
A ⊗FB

2 +FA
2 ⊗C⊥

B . We can then define the Z-code
Code1 as the space of strings such that for each v ∈ V01 ∪ V10, the strings on Q(v) pass the
checks in C⊥

A ⊗ C⊥
B , so each matrix Q(v) ∈ CA ⊗ FB

2 + FA
2 ⊗ CB.

To show that this is a CSS code, we consider without loss of generality a u ∈ V00 and
v ∈ V01, and an arbitrary hX ∈ CA ⊗ CB, hZ ∈ C⊥

A ⊗ C⊥
B on these respective vertices. There

are 2 cases: these vertices are not connected by any b ∈ B, so Q(u) ∩Q(v) = ∅. This means
that the checks are nonzero on different substrings defined by Q(u) and Q(v), so hX · hZ = 0.
If alternatively u, v are connected by an edge b ∈ B, Q(u) ∩Q(v) is a set of all edges a ∈ A
that each create a square with this shared edge b. This defines a column in each matrix
Q(u) and Q(v) where they agree; a product of parity checks on each vertex is therefore a
check on a column in Q(u) times a check on a column in Q(v) (plus 0 corresponding to the
rest of the space, where they are not both nonzero). Because Q(u) ∈ Code0, Q(v) ∈ Code1,
hX · hZ = (hx ∈ CA) · (hz ∈ C⊥

A) + 0 = 0. The orthogonality of these checks ensures that
Code⊥0 ⊆ (Code⊥1)

⊥ = Code1 and Code⊥1 ⊆ (Code⊥0)
⊥ = Code0.

2

1.3 Parameters of CSS Code

We began with linear error correcting codes CA and CB; if we strategically choose “good”
codes, we can create a “good” CSS code. Each code acts on the generating edges in A,B, so
has ∆ bits; CA encodes a number of logical bits linear in this number, an arbitrary ρ∆, and
CB is strategically chosen to have a number of logical bits equal to the number of independent
checks constraining CA. Hence CA = [∆, ρ∆], CB = [∆, (1 − ρ)∆] (each has some distance
that will be discussed later).

For each vertex in V00 ∪ V11, the X-code is constrained by checks on Q(v) correspond-
ing to the (ρ∆)((1− ρ)∆) parity checks in CA ⊗ CB. Hence the dimension of X-constraints
is 2|G|ρ(1− ρ)∆2. Similarly, for each vertex in V01 ∪V10, the Z-code is constrained by checks
on Q(v) corresponding to the ((1− ρ)∆)(ρ∆) parity checks in C⊥

A ⊗ C⊥
B .

For each of |G| vertices in a Vij, there are ∆2 combinations of a, b edges defining all possible
squares in the space. This space of bits is constrained by both of these sets of X-checks and
Z-checks, so the dimension of the CSS code is |G|∆2− 4|G|ρ(1−ρ)∆2 = n(1−2ρ)2, so linear
in the number of logical bits.

Importantly, each parity check is applied to ≤ ∆2 bits, and each bit, identified by a square,
is involved in ≤ 4ρ(1− ρ)∆2 checks: hence, the code is low-density.

2 Quantum Tanner Code Distance

2.1 Distance from Tanner Codes

Having established that CA, CB are “good” codes, we recognize that their code distance is
linear in their number of bits ∆, as are their orthogonal codes C⊥

A , C
⊥
B . We can define the

minimum distance of these code spaces to be δ∆. A challenge remains to ensure that the
graphs instantiated by this code are not so expansionary that their distances are hard to
constrain from constraints on the terms in their products. This is a familiar problem from
our discussion of Tanner codes.

In fact, we can recognize that our X-code and Z-code are each Tanner codes, which are
applied to a graph and a base code, and require that the sub-strings corresponding to the
sets of edges at each vertex are in the base code. In particular, we can define G□

0 as the graph
with vertices in V00 ∪ V11 and edges corresponding to each square connecting such vertices.
Now, the X-code is defined on this graph, and requires that the substrings at each vertex
are in the code space C⊥

A ⊗FB
2 +FA

2 ⊗C⊥
B , so is Tan(G□

0 , C
⊥
A ⊗FB

2 +FA
2 ⊗C⊥

B). Likewise, the
Z-code is the Tanner code Tan(G□

1 , CA ⊗ FB
2 + FA

2 ⊗ CB).

3

We note that the number of distinct edges at G□
0 correspond to the a edges that can be taken

from V00 to V10 times the b edges that can be taken from V10 to V11, each in composition
defining a different edge of G□

0 . This means that our constraint on the individual Cayley
graphs connecting Vij to its neighbor will multiply.

We must consider the constraints we can impose on our Cayley graphs. For a graph
G = (V,E), its adjacency matrix has rows and columns consisting of vertices u, v in the
graph, and entries of 1 if u and v are connected by an edge. This real, symmetric matrix
has real eigenvalues in an orthonormal basis, which we order as λ1 ≥ ... ≥ λn. We can
define λ = max{λ2, |λn|}, and recognize that for an r-regular graph, where each vertex is
connected to r other vertices, λ1 is guaranteed to be around r, but a smaller λ provides a
tighter constraint on how the graph expands. A graph is Ramanujan if λ ≤ 2

√
r − 1; we

choose strategically to have Cayley graphs that are Ramanujan: specifically, that CayL(G,A)
and CayR(G,B) are such that λ ≤ 2

√
∆; now, G□

0 and G□
1 have λ ≤ (2

√
∆)(2

√
∆) = 4∆.

Finally, we examine a condition on the base codes C⊥
A ⊗FB

2 +FA
2 ⊗C⊥

B and CA⊗FB
2 +FA

2 ⊗CB

(which is fulfilled by all of our attempted example codes, so finding a counterexample
may yet prove challenging): the codes must be κ-product expanding. Focusing on x ∈
CA ⊗ FB

2 + FA
2 ⊗ CB, we recognize that it decomposes as c + r where c has columns in CA

and r has rows in CB, |x| = |c+ r| ≥ κ∆(||c||+ ||r||), where |z| is the Hamming weight and
||c|| (||r||) consists of the number of nonzero columns (rows). This constrains the expansion
of columns in CA and rows in CB, so limits the Hamming weight of cv + rv in terms of the
number of nonzero rows and columns in cv and rv.

2.2 Minimal Representations

A string x ∈ Code1\Code⊥0 at a particular vertex v ∈ V01∪V10 is some xv ∈ CA⊗FB
2 +FA

2 ⊗CB.
We call the minimal representation of its restriction to a vertex v to be its decomposition
xv = cv + rv minimizing ||cv||+ ||rv||. These cv, rv across all vertices in a particular Vij define
the value of x on every set of edges going through every vertex in Vij, so serve as a basis by
which we can decompose an entire x ∈ Code1 \ Code⊥0 . Choosing this decomposition across
the vertices of V01, we get x = C0 + R1 where C0 =

∑
v∈V01

cv and R1 =
∑

v∈V01
rv. We can

also get an equivalent decomposition across vertices in V10, x = C0+R1 where C0 =
∑

v∈V10
cv

and R1 =
∑

v∈V10
rv.

We note that strings cv, rv are weight ≤ ∆2, and that for v1, v2 ∈ V10, no squares con-
tains both vertices, so their strings cv1 , rv1 , cv2 , rv2 are non-overlapping. However, for v1 ∈ V10

and v2 ∈ V01, there are some squares that share both vertices, so their strings cv1 , rv1 , cv2 , rv2
could overlap.

A representation of x is minimal if ||C0||+ ||C1||+ ||R0||+ ||R1|| is minimized. We define the

4

norm ||x|| to be ||C0||+ ||C1||+ ||R0||+ ||R1|| for the minimal representation (C0, C1, R0, R1).

This is a crucial piece of analysis: we must establish a relationship between the constraints on
V10 and V01, and yet the constraints on the former create decompositions of the form C0+R1

and the constraints on the latter create decompositions of the form C1 +R0. To relate them,
we create new strings C0+R0 in a new “Frankenstein” code space Tan(G□

0 , CA⊗FB
2 +FA

2 ⊗CB)
consisting of the vertices from Code0 and the connections from Code1.

First, we consider decompositions x = C0 + R1 = C1 + R0, and recognize that because
we work in addition modulo 2, now C0 +R0 = C1 +R1. We call this string x0. Our goal is
to create (C0, C1, R0, R1) that will be minimal as a representation for x0.

Suppose a decomposition is not minimal at some v ∈ V00. Now (x0)v = (C0)v+(R0)v = cv+rv.
Replace these with c′v + r′v; because these must still add to x0, whatever term tv displaces
c′v from cv also displaces r′v from rv (again, note that tv = −tv in addition modulo 2). For
c′v and cv to both be ∈ CA ⊗ FB

2 , their difference tv must have columns in CA; likewise
for r′v and rv to both be ∈ FA

2 ⊗ CB, their difference tv must have rows in CB. Hence,
tv ∈ CA ⊗ CB = (C⊥

A ⊗ FB
2 + FA

2 ⊗ C⊥
B)

⊥ = Code⊥0 . So, a new choice of representation of
x0 corresponds to a shift of C0 to C0 + tv and R0 to R0 + tv. So, a new representation for
x0 = (C0 + tv) + (R0 + tv) creates a new x+ tv = C0 +R1 + tv = C1 +R0 + tv, which differs
from the old one by an element of Code⊥0 .

This proves a Lemma: if x has the minimum norm in x + Code⊥0 , then the minimum
representation of x corresponds to the decomposition of x0 with minimal norm.

This will prove important: we can use the minimum-norm x ∈ x + Code⊥0 , and define
expansionary properties on x in terms of Sij = {v ∈ Vij : (Ci + Rj)|Q(v) ≠ 0}, which makes
use of C0 +R0 and C1 +R1 to describe expansion through V00 and V11.

2.3 The Objective

We want to prove that the Z-distance is linear in the number of bits (and apply symmetrical
arguments that we do not examine for the X-distance). This condition is met if ||x|| ≥ δ2κn

512∆2 .
If this is true, we can prove the following theorem:

d+Z = min
x∈Code1\Code⊥0

|x| ≥ δ22n

1024δ2

To prove this, let x ∈ Code1 \ Code⊥0 and (C0, C1, R0, R1) be the minimial representation.

x = C0 +R1 =
∑
v∈V01

cv + rv

5

|x| = |C0 +R1| = |
∑
v∈V01

cv + rv|

Because the vertices in V01 are non-overlapping in their squares, |
∑

v∈V01
cv+rv| =

∑
v∈V01

|cv+
rv|. Furthermore, each |cv + rv| ≥ κ∆(||cv||+ ||rv||); recall that a κ-product expanding graph
constrains expansion of columns in CA and rows in CB, so limits the Hamming weight of
cv + rv in terms of the number of nonzero rows and columns in cv and rv.

|x| =
∑
v∈V01

|cv + rv| ≥
∑
v∈V01

κ∆(||cv||+ ||rv||) = κ∆(||C0||+ ||R1||)

Similarly:
|x| ≥ κ∆(||C1||+ ||R0||)

Combining these:

|x| ≥ κ∆
1

2

(
||C0||+ ||C1||+ ||R0||+ ||R1||

)
= κ∆

1

2

(
||x||

)
= κ∆

1

2

(δ2κn

512∆2

)
The rest of this lecture attempts to prove the goal that ||x|| ≥ δ2κn

512∆2 . This is true for any x

if it is true for the minimum-norm x ∈ x+ Code⊥0 .

3 Proving the Code Distance

3.1 Exceptional and Ordinary Vertices

Assume ||x|| < δ2κn
512∆2 . Now define Sij = {v ∈ Vij : (Ci +Rj)|Q(v) ≠ 0}, the set of vertices on

which the relevant matrix is nonzero.

We assume Ci +Rj to be the minimal representation (of either x or x0), which can only be
true because we have assumed that x has the minimum norm in x+Code⊥0). Because of this,
each vertex on which Ci +Rj is nonzero contributes either a row or a column to Ci or Rj:

|Sij| ≤ ||Ci||+ ||Rj||

Adding whichever terms are missing:

|Sij| ≤ ||C0||+ ||C1||+ ||R0||+ ||R1|| = ||x|| < δ2κn

512∆2

Now, we examine each v ∈ Sij, and define it as either exceptional or ordinary. v is exceptional

if ||cv|| + ||rv|| ≥ α∆ for α = δ2

256
, and v is ordinary if ||cv|| + ||rv|| > α∆. Define Se

ij to be
the set of exceptional vertices and So

ij to be the set of ordinary vertices.

6

3.2 Weight of Ordinary Vertices

Assume v is ordinary. Any nonzero column in cv comes from CA, so fulfills that code’s
distance and so has ≥ δ∆ 1s. Each 1 in this column that gets cancelled by an entry in a row
corresponds to a nonzero row in rv, so because v is ordinary this can only be the case for
< α∆ rows. Hence cv has ≥ δ∆− α∆ 1s (in either xv or (x0)v, whichever is relevant for this
Sij). α ≪ δ, so cv has ≥ δ

2
∆ 1’s.

We will create a bound on the number of exceptional vertices, allowing us to describe
our behavior mostly in terms of these ordinary vertices.

3.3 Number of Exceptional Vertices

Lemma: |Se
00|, |Se

11| ≤ 64
α2κ2∆2 |S00 ∪ S11|, |Se

01|, |Se
10| ≤ 64

α2κ2∆2 |S01 ∪ S10|.

We note that ∆, the number of generators used to define the original graph, so is a pa-
rameter under our control, which can allow us to scale |Se

ij| to being arbitrarily small. This
is the condition that we use to create a contradiction.

The proof of this Lemma is an exercise on Homework 4. However, we present an intu-
itive sketch here.

Consider v ∈ Se
00. Q(v) appears in x0; because v is exceptional, x0 restricted to Q(v)

has many nonzero rows and nonzero columns; these rows and columns appear in the minimal
representation of x0 and provide a bound on Hamming weight because of the κ-product
expansion. So there are many squares that have vertex v and appear in x0.

Considering u ∈ S11 ⊆ V11, so x1|Q(u) contains at least one 1.

Examining the squares at v defined by adjacent edges in x0, and connecting to an edge
adjacent to some u ∈ V11, we find an adjacency relationship defined by G□

0 , as seen previ-
ously. This is the graph with all vertices in V00 ∪ V11 edges defining squares. This is an
expander graph: because we have defined it to be Ramanujan, ≤ 4∆, which means that each
1 ∈ x0|Q(v) ends up connecting to many different u ∈ V11; and we recall that there are many
such 1s in x0. Qualitatively:

|Se
00| · γ ≤ |S11| ≤ |S00 ∪ S11|

for a large γ. This means that |Se
00|, the number of exceptional vertices, is constrained; too

many of them would expand into a result too big in S11. (The formal proof, an exercise, uses
the Expander Mixing Lemma for this step).

7

Assume |S01 ∪ S10| ≥ |S00 ∪ S11| and |S01| ≥ |S10|: most nonzero neighborhoods are next to
vertices in V01. Now,

|Se
01| ≤

64

α2κ2∆2
|S01 ∪ S10| ≤

64

α2κ2∆2
2|S01|

So by controlling ∆, we can make |Se
01| ≤ any small constant ·|S01|; the proportion of ordinary

vertices can be made to be ≥ a for any a < 1.

3.4 Expansion into S10

Now, consider u ∈ S0
01; now xu = cu+ru, and there is at least one nonzero column in cu or row

in ru. We can assume without loss of generality that at least half of ordinary vertices produce
a nonzero column (if not, it would be true for rows): hence the number of nonzero columns is
≥ 1

2
|S0

01| ≥ a
2
|S01|. We call these “ordinary columns”, and know that their Hamming weight

is ≥ δ
2
∆.

We can define T = {v ∈ S00 : a nonzero column of cv is shared with an ordinary u ∈ So
01}.

Now, we show a Lemma: |T | ≤ 64
δ2∆

|S10|, again replacing a proof using the Expander Mixing
Lemma (an exercise) with an intuitive picture.

For a v = (g, 00) ∈ T , x|Q(v) = xv = cv + rv shares a column with some u ∈ So
01 (we recall

that Q(u = (gb, 01)) shares some column with Q(v = (g, 00))). Because this is an ordinary
column, with ≥ δ

2
∆ ones, this column in cv also has ≥ δ

2
∆ ones. This means that it must

have at least δ
2
∆ nonzero rows.

Now, consider w = (ag, 10) ∈ V10 (recall that Q(w = (ag, 10)) shares some row with
Q(v = (g, 00))). Now, xw has a nonzero row, so is in S10; the adjacency relation between
these vertices, given that they share a row, is defined by CayL(G,A), which is a Ramanujan
expander graph, ensuring that this expansion hits enough elements in S10.

There are |T | vertices; each contributes at least δ
2
∆ nonzero rows. In the expander graph,

these rows correspond to different edges to different vertices in S10, up to a factor proportional

8

to δ; hence, the number of vertices in |S10| is greater than this number, and we arrive at
|T | δ

2
∆ ≤ η

δ
|S10|.

3.5 Averaging Across T

Consider the average of ||cv||+||rv|| across all v ∈ T = {v ∈ S00 : a nonzero column of cv is shared with an ordinary u ∈ So
01}:

avgv∈T (||cv||+ ||rv||) ≥
1

|T |
∑
v∈T

||cv||

We are summing over every v that shares a nonzero column with an ordinary vertex ∈ So
01;

hence this is lower bounded by the number of “ordinary columns,” which we assumed without
loss of generality to be ≥ a

2
|S01|. Using the lower bound on |T |:

avgv∈T (||cv||+ ||rv||) ≥
δ2∆

64|S10|
(a
2
|S01|

)
Noting that there are at least as many vertices in S01 as in S10, we note:

avgv∈T (||cv||+ ||rv||) ≥
δ2∆a

128

Now, recall that v ∈ Se
00 if ||cv||+ ||rv|| ≥ δ2∆

256
, so the average norm of a vertex in T is almost

twice the lower bound on what is needed for a vertex to be exceptional; hence, there must
be many exceptional vertices, which we will use to arrive at our long-awaited contradiction.

Where p is the fraction of exceptional vertices in T , the average norm across vertices in
T is upper bounded by the fraction that are exceptional (which have norm at most ∆, an
entire column) plus the fraction that are ordinary (which have norm at most δ2∆

256
). So:

δ2∆a

128
≤ avgv∈T (||cv||+ ||rv||) ≤ p∆+ (1− p)

δ2∆

256

2a
δ2∆

256
≤ avgv∈T (||cv||+ ||rv||) ≤ p∆+

δ2∆

256

(2a− 1)
δ2∆

256
≤ p∆

So:

p ≥ (2a− 1)
δ2

256

which is a constant fraction, independent of ∆.

9

3.6 Finding a Contradiction

A constant fraction of T are exceptional; if T is large enough, we get a number of exceptional
vertices that can break our previous bounds.

At any v ∈ V01, there are at least a
2
|S10| ordinary columns. T consists of all the vertices

sharing an ordinary column; the smallest it could be would be defined by a small number of
vertices, all of whose columns are ordinary columns. Because each vertex has ∆ columns, we
can take at most ∆ ordinary columns that could be shared by a single vertex in T . Hence,
the number of vertices in T is at least a

2
|S10| 1∆ , which is ≥ a

2∆
|S10 ∪ S01|12 .

The set of exceptional vertices is at least the size of T times the fraction p of T that is
exceptional (which we just lower bounded):

|Se
00| ≥ |T | · p ≥ (2a− 1)

δ2

256

(a

4∆
|S10 ∪ S01|

)
=

C1

∆
|S00 ∪ S11|

for some constant C1. But we have already established that |Se
00| ≤ 64

α2κ2∆2 |S00 ∪ S11| =
C2

∆2 |S00 ∪ S11|; for any C1, C2, |S00 ∪ S11|, we can choose some ∆ large enough that it cannot
be true that:

C1

∆
|S00 ∪ S11| ≤ |Se

00| ≤
C2

∆2
|S00 ∪ S11|

So, it cannot have been true that ||x|| < δ2κ
512∆2n. As shown, meeting this goal establishes

that our minimum-weight error in Code1 \Code⊥0 is linear in n; this establishes the Quantum
Tanner Code as our first-ever “good” quantum code.

References

[1] John Wright (Apr. 2024) Quantum Tanner Codes IV, CompSci 294: Quantum Coding
Theory.

[2] Shouzhen Gu, Christopher A. Pattison and Eugene Tang (Jun. 2023) An efficient de-
coder for a linear distance quantum LDPC code, Proceedings of the 55th Annual ACM
Symposium on Theory of Computing.

[3] Anthony Leverrier and Gilles Zemor (Oct. 2022) Quantum Tanner codes, 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS).

[4] Anthony Leverrier and Gilles Zémor (Aug. 2023) Decoding Quantum Tanner codes, IEEE
Transactions on Information Theory.

[5] A. Lubotzky, R. Phillips and P. Sarnak (Sep. 1988) Ramanujan graphs, Combinatorica.

[6] Daniel Gottesman (Jan. 2018) Quantum Error Correction and Fault Tolerance, QIC 890.

10

[7] Wikipedia (Jan 2024) Expander Mixing Lemma, Wikipedia Foundation.

11

	Recap
	Left-Right Cayley Complex
	Defining a CSS Code
	Parameters of CSS Code

	Quantum Tanner Code Distance
	Distance from Tanner Codes
	Minimal Representations
	The Objective

	Proving the Code Distance
	Exceptional and Ordinary Vertices
	Weight of Ordinary Vertices
	Number of Exceptional Vertices
	Expansion into S10
	Averaging Across T
	Finding a Contradiction

